Dynamical Symmetries in q-deformed Quantum Mechanics
نویسنده
چکیده
The dynamical algebra of the q-deformed harmonic oscillator is constructed. As a result, we find the free deformed Hamiltonian as well as the Hamiltonian of the deformed oscillator as a complicated, momentum dependent interaction Hamiltonian in terms of the usual canonical variables. Furthermore we construct a well-defined algebra SUq(1,1) with consistent conjugation properties and comultiplication. We obtain non lowest weight representations of this algebra.
منابع مشابه
q-oscillators, (non-)Kähler manifolds and constrained dynamics
It is shown that q-deformed quantummechanics (systems with q-deformed Heisenberg commutation relations) can be interpreted as an ordinary quantum mechanics on Kähler manifolds, or as a quantum theory with second (or first)-class constraints. 1. The q-deformed Heisenberg-Weyl algebras [1], [2] exhibiting the quantum group symmetries [3],[4] have attracted much attention of physicists and mathema...
متن کاملPerturbative Aspects of q - Deformed Dynamics
Within the framework of the q-deformed Heisenberg algebra a dynamical equation of q-deformed quantum mechanics is discussed. The perturbative aspects of the q-deformed Schrödinger equation are analyzed. General representations of the additional momentum-dependent interaction originating from the q-deformed effects are presented in two approaches. As examples, such additional interactions relate...
متن کاملq-Deformed Dynamics and Virial Theorem
In the framework of the q-deformed Heisenberg algebra the investigation of qdeformation of Virial theorem explores that q-deformed quantum mechanics possesses better dynamical property. It is clarified that in the case of the zero potential the theoretical framework for the q-deformed Virial theorem is self-consistent. In the selfadjoint states the q-deformed uncertainty relation essentially de...
متن کاملQuantum Algebras in Nuclear Structure
Quantum algebras are a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction to the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the suq(2) rotator model and its extensions, the construction of deformed exactly soluble models (Int...
متن کاملQuantum Groups and Their Applications in Nuclear Physics
Quantum algebras are a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction to the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the suq(2) rotator model and its extensions, the construction of deformed exactly soluble models (u(3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008